ON THE PHOSPHATE LINKAGES AND THE STRUCTURE OF A DISACCHARIDE UNIT OF THE TYPE-SPECIFIC POLYSACCHARIDE OF PNEUMO-COCCUS TYPE XIX*

TOSHIRO YADOMAE, NAOHITO OHNO, AND TOSHIO MIYAZAKI**

Department of Microbial Chemistry, Tokyo College of Pharmacy, 1432-1 Horinouchi, Hachioji, Tokyo 192-03 (Japan)

(Received October 16th, 1978; accepted for publication, November 10th, 1978)

ABSTRACT

The structure of the capsular polysaccharide (S-XIX) of Pneumococcus Type XIX, which contains residues of D-glucose, L-rhamnose, 2-acetamido-2-deoxy-D-mannose, and phosphate, has been investigated by acid hydrolysis, treatment with acid phosphatase, mass spectrometry, and 13 C-n.m.r. spectroscopy. Phosphoric esters in S-XIX were largely resistant to hydrolysis (4m HCl, 100°, 3 h). With m or 2m HCl at 100° for 3 h, 4-O-(2-amino-2-deoxy- β -D-mannopyranosyl)-D-glucose 4'-phosphate was liberated. More-drastic hydrolysis of S-XIX gave 2-amino-2-deoxy-D-mannose 3-, 4-, and 6-phosphates, and 4-O-(2-amino-2-deoxy-D-mannopyranosyl)-D-glucose and its 4'-phosphate.

INTRODUCTION

The antigenic, capsular polysaccharide (S-XIX) of Pneumococcus Type XIX is composed of a repeating unit containing residues of D-glucose, L-rhamnose, 2-acetamido-2-deoxy-D-mannose, and phosphoric acid. The partial structure of S-XIX has been reported¹⁻⁴. When S-XIX was treated with mild acid or alkali and then with monophosphatase, it gave an oligosaccharide that was a minimum repeating-unit⁴. However, even drastic conditions of hydrolysis did not completely degrade S-XIX into monosaccharides and phosphoric acid, and sugar phosphates survived. Thus, S-XIX contains acid-labile and acid-resistant moieties, and the position of the phosphate linkages remains to be elucidated.

The chemical properties of sugar phosphates have been documented^{5,6}. For teichoic acids, phosphate migration sometimes occurs under acidic conditions⁵, and for the meningococcal polysaccharide, 2-acetamido-2-deoxy-D-mannose 6-phosphate is resistant to acid hydrolysis⁶. Thus, determination of the structure of a sugar phosphate may be difficult by chemical means, but mass spectrometry⁷ and ¹³C-n.m.r. spectroscopy⁸ can be useful in this connection.

^{*}Polysaccharides of Type XIX Pneumococcus: Part IV. For Part III, see Ref. 4.

^{**}To whom inquiries should be addressed.

We now report on the preparation of sugar phosphates by acid hydrolysis of S-XIX.

EXPERIMENTAL

The pneumococcal type XIX capsular polysaccharide was generously provided by (the late) Professor J. K. N. Jones and was purified by the method previously described².

Quantifications of hexose⁹, phosphate¹⁰, and nitrogen¹¹ were performed by literature procedures. Ascending p.c. and t.l.c. were performed on Toyo Roshi No. 50 filter paper and Merck 5577 cellulose sheet, respectively, at room temperature with A, ethyl acetate-pyridine-acetic acid-water (5:5:2:4); B, ethyl acetate-pyridine-acetic acid-water (10:10:1:6); C, ethyl acetate-pyridine-acetic acid-water (5:5:1:3); and D, tert-pentyl alcohol-water-toluene-p-sulphonic acid (30:15:1). Sugars were detected with alkaline silver nitrate¹² or ninhydrin¹³, and sugar phosphates with the Hanes-Isherwood reagent¹⁴. Radioactive fractions were counted in 5 ml of tT76 emulsion¹⁵ by using a Packard scintillation counter (Model 3330). G.l.c. was performed at 180° with a Shimadzu GC-6A instrument, equipped with a glass column (0.3 × 200 cm) packed with 1% of OV-17 on Gas Chrom Q. Trimethylsilylation of sugar phosphates was performed by the method of Harvey⁷. 2-Amino-2-deoxy-D-mannose 6-phosphate was prepared¹⁶ from 2-amino-2-deoxy-D-mannose. Mass spectrometry (70 eV) was performed on a Hitachi Double Focussing Mass Spectrometer RMU-7L. 13C-N.m.r. spectra were recorded at room temperature on a JEOL-FX 100 spectrometer at 25.0 MHz, in the pulsed Fourier-transform mode with complete proton decoupling. Chemical shifts are reported as p.p.m. downfield from the signal for internal MeOH.

Acid hydrolysis of S-XIX. — Samples (0.5 mg) of S-XIX were hydrolysed with M, 2M, or 4M HCl (1 ml) at 100° for 3 h. The acid was removed in vacuo at $<40^{\circ}$. The hydrolysate was made up to 1 ml with water, and the phosphoric acid in 50 μ l was determined¹⁰.

Reduction with $[^3H]$ -NaBH₄. — Each hydrolysate was concentrated to dryness, made up to 50 μ l, and reduced by the same volume of 0.2 μ l, and 1.4° for 24 h. The excess of NaBH₄ was decomposed with M HCl.

Fractionation of the acid hydrolysate of S-XIX. — Each reduced hydrolysate was applied to a column (2 × 22 cm) of Dowex-50 X2 (H⁺) resin (200–400 mesh), which was eluted with water (200 ml) and then with 0.5M HCl. Portions (25 μ l) of each fraction were counted with 5 ml of tT76 emulsion¹⁵.

The non-reduced, acid hydrolysate of S-XIX (120 mg) was applied to a column (2.5 \times 30 cm) of Dowex-50 (H⁺) resin (200–400 mesh), which was eluted with water (600 ml) and then with 0.5M HCl. Aliquots (6 ml) from the fractions were assayed by the anthrone- H_2SO_4 method¹⁷ and the Elson-Morgan method¹⁸.

Acid-phosphatase treatment of the hydrolysates. — Phosphate-containing frag-

ments were treated¹⁹ with wheat-germ acid phosphatase. Portions (10 μ l) of each fraction (\sim 10,000 c.p.m.) were mixed with 0.1M acetate buffer (pH 5.7, 75 μ l), 0.2M magnesium chloride (10 μ l), and 2 units of wheat-germ acid phosphatase (70 μ l). After incubation overnight at 37°, more enzyme solution (2 units) was added. After 8-h incubation, the mixture was dialysed against distilled water (300 ml) for 12 h, and the dialysable fraction was concentrated and subjected to p.c. (solvent B).

RESULTS

Acid hydrolysates of S-XIX. — On acid hydrolysis of S-XIX (4 $^{\rm M}$ HCl, 100°, 3 h), only 11% of the total phosphate was liberated as phosphoric acid. P.c. (solvent A) of the hydrolysate revealed rhamnose, glucose, 2-amino-2-deoxymannose, and four unidentified saccharides ($R_{\rm F}$ 0.14–0.27) that reacted positively to ninhydrin¹³ and the Hanes-Isherwood reagent¹⁴ (except the saccharide of highest $R_{\rm F}$).

The fractionation pattern of the $[^3H]$ -NaBH₄-reduced, acid hydrolysate on Dowex-50(H⁺) resin is shown in Fig. 1c. Radioactive peaks eluted with water were designated as $A-F_{\rm OT}$, respectively, and 2 peaks eluted with 0.5m HCl were designated as $G_{\rm OT}$ and $H_{\rm OT}$. Peak $A_{\rm OT}$ was $[^3H]$ -L-rhamnitol and $[^3H]$ -D-glucitol, peak $H_{\rm OT}$ was $[^3H]$ -2-amino-2-deoxy-D-mannitol, and peak $C_{\rm OT}$ showed $R_{\rm Glucitol}$ 0.18 (p.c., solvent B).

The elution patterns of the reduced, milder acid hydrolysates (M and 2M HCl, 100°, 3 h) on Dowex-50(H⁺) resin are shown in Fig. 1a,b.

The reduced and non-reduced, acid hydrolysates gave similar elution patterns. The peaks eluted with water were designated A-F, and those with 0.5M HCl, G and H.

Characterisation of peak B. — When peak $B_{\rm OT}$ ($R_{\rm Glucitol}$ 0.24) was treated with acid phosphatase, the radioactivity was detected only in the area corresponding to 2-amino-2-deoxymannitol. Thus, B was a 2-amino-2-deoxy-D-mannose phosphate.

Characterisation of peaks D-F. — When peak D was hydrolysed with 4M HCl at 100° for 8 h, D-glucose, 2-amino-2-deoxy-D-mannose, and phosphoric acid were detected (p.c., solvent C). After treatment of peak $D_{\rm OT}$ ($R_{\rm Glucitol}$ 0.1) with acid phosphatase, radioactivity was detected only in the area corresponding to peak $G_{\rm OT}$. Peak F contained $^{10.11}$ equimolar amounts of P and N (0.98:1.0), and showed $R_{\rm F}$ and T values similar to those of 2-amino-2-deoxy-D-mannose 6-phosphate 19 .

The 13 C-n.m.r. spectrum of D is shown in Fig. 2, and data for peaks D-F and authentic sugars are shown in Table I. The downfield shifts of resonances due to carbons attached to the phosphate groups and/or another sugar ring, and also 2-or 3-bond coupling between 31 P and 13 C, can be used to determine the position of the linkage 20 .

In the spectrum of D, three ³¹P, ¹³C-couplings (70.2, 71.2, and 76.3 p.p.m.) were characteristic. In the spectra of 2-amino-2-deoxy-D-mannose 6-phosphate and 2-amino-2-deoxy-D-mannose, 2-bond coupling of C-6 and 3-bond coupling of α - and β -C-5 were characteristic. For F and 2-amino-2-deoxy-D-mannose 6-phosphate, quite similar chemical shifts and ³¹P, ¹³C-couplings were observed (Table II)²⁰. Similarly,

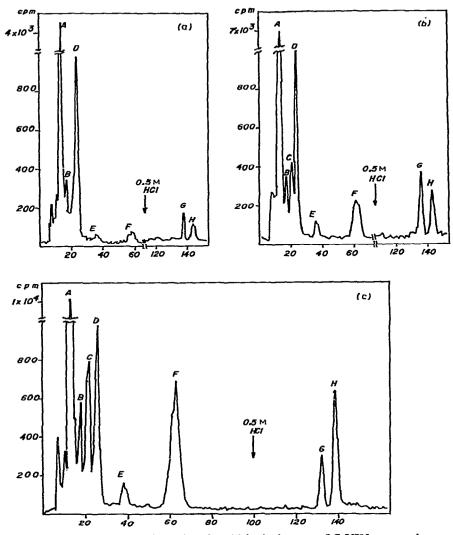


Fig. 1. Elution profile of the reduced, acid hydrolysates of S-XIX on a column of Dowex- $50(H^{+})$ resin eluted with water (200 ml) and then 0.5m HCl: (a) hydrolysate obtained with m acid, (b) 2m acid, and (c) 4m acid.

the spectrum of E indicated six couplings to ^{31}P for the C-3,4,6- α - and - β -resonances (Table II). These couplings were consistent only with a linkage through position 4, and the chemical shifts were similar to the theoretical values estimated from 2-amino-2-deoxy-D-glucose 4-phosphate²⁰. For D, three ^{31}P , ^{13}C -couplings occurred for resonances of C-3,4,5 of 2-amino-2-deoxy-D-mannose. The spectra of D and E were similar and consistent with the β configuration, except for the shifts of the C-1 and C-2 resonances. Therefore, the 2-amino-2-deoxy-D-mannose residue was β -linked, and the downfield shift of the D-glucose C-4 signal indicates that 2-amino-2-deoxy-D-mannose was linked to C-4 of D-glucose.

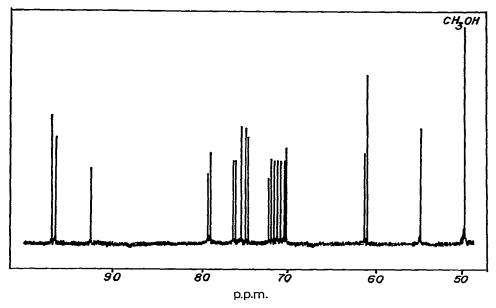


Fig. 2. 13 C-N.m.r. spectrum of peak D with spectral windows of 2 kHz (65,000 accumulations).

TABLE I

13C CHEMICAL SHIFTS (P.P.M. FROM INTERNAL MeOH) OF THE HYDROLYSATE AND AUTHENTIC SUGARS

Compound	C-I	C-2	C-3	C-4	C-5	C-6
α-D-ManN HCl	91.1	55.3	67.7	67.1	72.8	61.2
β-D-ManN HCl	91.8	56.4	70.3	67.0	76.9	61.2
α-D-ManN 6-phosphate	91.3	55.2	67.6	66.6	71.7	64.6
β -D-ManN 6-phosphate	92.0	56.4	70.0	66.5	75.7	64.6
α-D-Glc	92.9	72.3	73.6	70.5	72.3	61.6
β-D-Glc	96.7	75.0	76.7	70.5	76.8	61.7
Peak D	97.2	55.0	70.2	71.2	76.3	61.1
	92.7	72.0	71.9	79.0	70.8	61.1
	96.7	74.7	74.9	79.1	75.4	61.2
Peak E	90.8	54.7	67.8	71.6	72.4	61.0
	91.9	55.9	70.3	71.4	76.1	61.2
Peak F	92.0	55.2	67.6	66.6	71.7	64.5
	91.3	56.4	70.1	66.4	75.7	64.5

Characterisation of peak G. — Characterisation of G was effected mainly by mass spectrometry. Hydrolysis of G with 4M HCl at 100° for 8 h gave D-glucose and 2-amino-2-deoxy-D-mannose in the molar ratio 1.0:1.03. Similarly, acid hydrolysis of peak $G_{\rm OT}$ ($R_{\rm Glucitol}$ 0.4) gave glucitol_{OT} and 2-amino-2-deoxy-D-mannose. The mass spectrum (Fig. 3) of N-acetylated²¹ and trimethylsilylated²² G contained peaks at m/e 204, 217, 330, 420, 451, 492, 508, 521, 637, 638, and 872, which were characteristic of a $(1\rightarrow 4)$ -linked, trimethylsilylated 4-O-(2-acetamido-2-deoxyaldohexosyl)aldohexose²³.

TABLE II

2- AND 3-BOND CARBON-PHOSPHORUS COUPLINGS (Hz) FOR THE PHOSPHORYLATED SUGARS

Compound	C-3	C-4	C-5	C-6
α-D-ManN 6-phosphate			6.8	4.9
β-D-ManN 6-phosphate			7.8	4.9
Peak D	1.4	5.4	6.8	
Peak E	2.2	5.2	7.3	
	1.5	3.8	7.3	
Peak F			8.1	5.1
			8.1	5.1

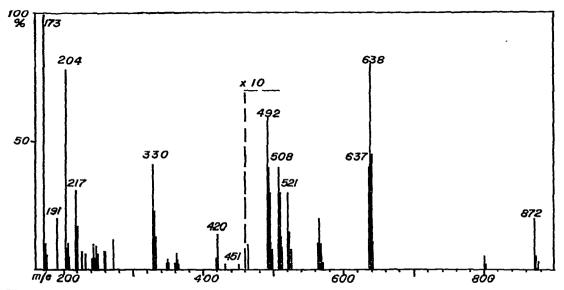


Fig. 3. Mass spectrum (peaks having m/e > 173) of N-acetylated and pertrimethylsilylated peak G.

DISCUSSION

Structural studies of pneumococcal capsular polysaccharides are important for a better understanding of pneumococcal pneumonia and of pneumococcal polysaccharide vaccines²⁴. The structures of several pneumococcal capsular polysaccharides^{25,26} have been studied and some of these polysaccharides contain sugar phosphates.

Previously, we reported that S-XIX contained acid- and alkali-labile linkages¹⁻⁴ attributable to phosphate groups. When S-XIX was treated with wheat-germ acid phosphatase, 7.5% of the total phosphate was liberated as phosphoric acid³, suggesting that the main phosphate linkage is not monoester. Only 11% of the total phosphate was liberated as phosphoric acid by hydrolysis using 4m HCl (100°, 3 h). In order to identify these phosphate linkages, analysis of the sugar phosphate moiety and the determination of the structure of a disaccharide unit in S-XIX were carried out.

It was proposed⁴, from the results of methylation and periodate-oxidation analysis, that the repeating unit involved D-ManNAc- $(1\rightarrow4)$ -D-Glc or D-Glc- $(1\rightarrow6)$ -D-ManNAc. The mass spectrum (Fig. 3) of N-acetylated and trimethylsilylated G, which is a non-phosphorylated oligosaccharide, showed a fragmentation pattern similar to that of a 4-O-(2-acetamido-2-deoxyaldohexosyl)aldohexose²³. The ratio of the intensities of the peaks at m/e 217 and 204 was <1, there was no peak at m/e 552, and the ratio of the intensities of peaks at m/e 638 and 637 was >1. These results are characteristic²³ of the $(1\rightarrow4)$ -linkage. On the other hand, hydrolysis of $G_{\rm OT}$ gave glucitol_{OT}, but not 2-amino-2-deoxymannitol_{OT}. Therefore, G is 4-O-(2-amino-2-deoxy-D-mannopyranosyl)-D-glucose, and this is the disaccharide unit of S-XIX. Similarly, from the results of 13 C-n.m.r. spectroscopy and phosphatase treatment, D is identified as 4-O-(2-amino-2-deoxy- β -D-mannopyranosyl)-D-glucose 4'-phosphate.

Hydrolysis of S-XIX, using 4M HCl at 100° for 3 h, gave, *inter alia*, three 2-amino-2-deoxy-D-mannose phosphates, two of which were identified as 2-amino-2-deoxy-D-mannose 4- (E) and 6-phosphate (F) by 13 C-n.m.r. spectroscopy. Peak B was 2-amino-2-deoxy-D-mannose 3-phosphate, since it had an elution volume different from that of the other two phosphates.

2-Acetamido-2-deoxy-D-mannose 6-phosphate has been reported²⁷ in group A *Neisseria meningitidis* capsular polysaccharide, and 2-acetamido-2-deoxy-D-glucose 4-phosphate in group X N. meningitidis capsular polysaccharide²⁰. 2-Acetamido-2-deoxy-D-mannose 3- and 4-phosphates were hitherto unknown.

Acid- or base-catalysed migration of phosphate, which is well known for teichoic acids and H. influenzae capsular polysaccharides 2 8, could occur on acid hydrolysis of S-XIX. Phosphorylated oligomer occurred only in peak D, and its yield was inversely proportional to the acid concentration, but the yields of other phosphorylated fractions were proportional (Fig. 1a-c). These results suggest that drastic, acid hydrolysis of S-XIX is accompanied by phosphate migration. One location of phosphate groups in S-XIX is at position 4 of 2-acetamido-2-deoxy-D-mannose, and the acid-resistant portion of S-XIX is a $(1\rightarrow 4)$ -linked 2-amino-2-deoxy- β -D-hexose unit as in chitin.

The location of the other phosphate groups in S-XIX is being investigated.

ACKNOWLEDGMENTS

The authors thank Mr. Y. Shida and Miss C. Takagai for the ¹³C-n.m.r. spectra and the mass-spectral measurements, respectively.

REFERENCES

- 1 T. MIYAZAKI AND J. K. N. JONES, Chem. Pharm. Bull., 17 (1969) 1531-1533.
- 2 T. MIYAZAKI, T. YADOMAE, AND J. K. N. JONES, J. Biochem. (Tokyo), 68 (1970) 755-758.
- 3 T. MIYAZAKI AND T. YADOMAE, Carbohydr. Res., 16 (1971) 153-159.
- 4 T. MIYAZAKI AND T. YADOMAE, Chem. Pharm. Bull., 18 (1970) 1249-1253.

- 5 A. R. ARCHIBALD AND J. BADDILEY, Adv. Carbohydr. Chem., 21 (1966) 323-375.
- 6 T. Y. Liu, E. C. Gotschlich, E. K. Jonssen, and J. R. Wysocki, J. Biol. Chem., 246 (1971) 2849–2858.
- 7 D. J. HARVEY AND M. G. HORNING, J. Chromatogr., 76 (1973) 51-62.
- 8 D. R. BUNDLE, H. J. JENNINGS, AND I. C. P. SMITH, Can. J. Chem., 51 (1973) 3812-3819.
- M. DUBOIS, K. A. GILLES, J. K. HAMILTON, P. A. REBERS, AND F. SMITH, Anal. Chem., 28 (1956) 350-356.
- 10 P. S. CHEN, JR., T. Y. TORIBARA, AND H. WARNER, Anal. Chem., 28 (1956) 1756-1758.
- 11 H. ROSEN, Arch. Biochem. Biophys., 67 (1957) 10-15.
- 12 W. E. TREVELYAN, D. P. PROCTER, AND J. S. HARRISON, Nature (London), 166 (1950) 444-445.
- 13 S. M. PARTRIDGE, Biochem. J., 42 (1948) 238-245.
- 14 C. S. HANES AND F. A. ISHERWOOD, Nature (London), 164 (1949) 1107-1111.
- 15 M. S. PETTERSON AND R. C. GREENE, Anal. Chem., 37 (1965) 854-857.
- 16 G. W. JOURDIAN AND S. RODEMAN, Biochem. Prep., 9 (1962) 44-47.
- 17 H, F. LAUNER, Methods Carbohydr. Chem., 1 (1962) 389-390.
- 18 S. GARDELL, Acta Chem. Scand., 7 (1953) 207.
- 19 N. I. RAO AND C. S. VAIDYANATHAN, Methods Enzymol., 9 (1966) 642-645.
- 20 D. R. BUNDLE, I. C. P. SMITH, AND H. J. JENNINGS, J. Biol. Chem., 249 (1974) 2275-2281.
- 21 E. KATZENELLENBOGEN, M. MULCZYK, AND E. RANANOWSKA, Eur. J. Biochem., 61 (1976) 191-197.
- 22 D. J. LEBLANC AND A. J. S. BALL, Anal. Biochem., 84 (1978) 574-578.
- 23 J. P. KAMERLING, J. F. G. VLIEGENTHART, J. VINK, AND J. J. DE RIDDER, Tetrahedron, 27 (1965) 4794-4757.
- 24 P. SMIT, D. OBERHOLZER, S. H. SMITH, H. J. KOORNHOF, AND M. R. HILLEMAN, J. Am. Med. Assoc., 238 (1977) 2613–2616.
- 25 M. HEIDELBERGER AND W. NIMMICH, Immunochemistry, 13 (1976) 67-80.
- 26 O. LARM AND B. LINDBERG, Adv. Carbohydr. Chem. Biochem., 33 (1976) 295-322.
- 27 H. J. JENNINGS, A. K. BHATTACHARJEE, D. R. BUNDLE, C. P. KENNY, A. MARTIN, AND I. C. P. SMITH, J. Infect. Dis., 136 (1977) S78-S83.
- 28 R. D. CRISEL, R. S. BAKER, AND D. E. DORMAN, J. Biol. Chem., 250 (1975) 4926-4930.